RRc-UNet 3D for lung tumor segmentation from CT scans of Non-Small Cell Lung Cancer patients

Van-Linh Le , Olivier Saut

MONC Team - Inria Bordeaux Sud-Ouest, Bordeaux, France

Context

- Lung cancer is the second most common cancer worldwide, and Non-Small Cell Lung Cancer (NSCLC) accounts for 85% of all lung cancers.
- Computed Tomography (CT) is an effective medical screening for the diagnosis and detection of lung cancer.
- Automatic segmentation of tumors in lung CT scans is highly desirable because manual segmentation is time-consuming and labor-intensive.
- Deep learning models provide the segmentation of medical images with a high accuracy.

NSCLC tumor segmentation

- **Top** = prediction. **Bottom** = ground truth.
- From left to right: X-axis, Z-axis, and 3D view (DSC > 0.95).

CT scan (3D volume) of a NSCLC patient and segmentation

Dataset and data augmentation

- The experimental CT scans come from 2 sources (public and local datasets):
 - Train/ validate the model on 3 public datasets (494 images).
 External validation (testing) on local dataset (41 images).

Evaluation

The **performance metrics** for segmentation on validation set.

	DSC	IOU	F1
On 3 categories	0.863	0.9971	0.9982
On tumor seg.	0.8777	0.7274	_

The Dice coefficient on **testing** images: 0.7682

The Dice coefficient histogram of the patients in the testing set: 30

- Data pre-processing: truncate intensity, z-normalization, crop and convert the CT to the new size.
- Data augmentation: randomly apply during training process (flip, deformation, and affine transformation).

Residual Recurrent (RRc) block and RRc-UNet 3D model

Residual Recurrent block (t=2)

RRc-UNet 3D model with 5 levels

RRc block

Input: two-channel input (CT scan and segmentation of lung

out of 41 cases obtained good predictions on tumor region.

- 1. A RRc-UNet 3D model to provide tumor segmentation from CT scans of NSCLC patients.
- 2. The proposed model provided an accurate segmentation with a

parenchyma).

- Output: segmentation of 3 categories.
- RRc-Unet 3D architecture was validated by an ablation study.

Evaluation metrics

- Dice score coefficient (DSC)
 Jaccard similarity (IOU)
- ► F1 score

Dice coeff. of 0.8777 for the validation set.

 The model can work with a whole 3D volume of the CT scan. The model can be applied to different medical image segmentation tasks.

Acknowledgments

This work was supported by the Fondation MSDAvenir and Fondation Inria for the Pimiento project.

https://cvamd2023.github.io/		Monday October 2, 2023			CVAMD Workshop
Université de BORDEAUX	CINS	inventeurs du monde numérique	Bordeaux INP AQUITAINE	Institut de Mathématiques de Bordeaux	Begonié unicancer Nouvelle-Aquitaine